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Abstract 
 
In the environment, synthetic polymers, commonly known as “plastics” are well known to undergo 
various chemical weathering processes which modify their surface chemistry by introducing new 
functional groups. Such changes are important to monitor, as they can severely influence the 
toxicity caused by plastic debris. Therefore, in this study, two chemometric models are proposed 
to accelerate the chemical classification of macro and mesoplastics found in the environment. For 
this purpose, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were 
applied on preprocessed infrared spectra of 83 plastic fragments found in public lake and river 
beaches. HCA associated all beach samples to a known plastic whereas PCA enabled the 
association of only 39.8% (33 out of 83) of the beach samples to a known plastic. However, both 
techniques agreed on 93.9% of the samples identified. According to PCA and HCA results, 
polypropylene and polyethylene were the most frequently identified polymers in the samples. PCA 
turned out to be a very promising tool for fast screening of weathered plastics, since distance of 
samples from the polypropylene cluster in the PCA plot was correlated to weathering. This was 
later confirmed by employing other characterization techniques such as micro-Raman, X-ray 
photoelectron spectroscopy and scanning electron microscopy. Finally, future experiments should 
focus on the applicability of the proposed combined chemometric approach for very small 
microplastics (<100 µm), as they have more important effects than larger plastics on aquatic 
ecosystems. 
 
Keywords: Multivariate analysis, plastics, Fourier-transform infrared spectroscopy, 
environmental fate, degradation, beach litter 
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1. Introduction 
Since the beginning of synthetic polymer production, commonly referred as plastic, in the early 
1950s, large amounts of debris of these compounds have been reported in multiple environmental 
compartments : surface waters 1, 2, sediments 3; soils 4, 5, air 6, and even Arctic ice7. During their 
life span, plastic litter may undergo various environmental stresses such as mechanical abrasion, 
UV-irradiation, thermo-oxidation and biodegradation. All these weathering processes induce the 
fragmentation of macroplastic items (size 25 mm) into mesoplastics (5 mm to 25 mm), then 
microplastics (1 µm to <5 mm) and finally nanoplastics (<1 µm). 
 
In the environment, these plastic fragments can act as sorbents and carriers of organic 
contaminants. Mato, et al. 8 reported an adsorption coefficient of up to 106, when comparing the 
concentrations of polychlorinated biphenyls detected on polypropylene (PP) pellets to that 
measured in seawater samples. While it is not clear yet whether the combined effects of plastics 
and associated contaminants are antagonistic or synergistic towards biota 9-12, there is no doubt 
that polymer type is among the most environmentally relevant properties of plastics along with 
size, shape and concentration, since it influences the interaction of plastic fragments with other 
compounds 13, 14. For example, rubbery polymers, such as polyethylene (PE) and polypropylene 
(PP) have more flexible chains than glassy polymers such as polyvinyl chloride (PVC), 
polystyrene (PS), and polyethylene terephthalate (PET). Therefore, in the former the greater chain 
mobility results in better diffusion of organic compounds within the polymer matrix than in the 
latter 15. Similarly, plastics with high degrees of crystallinity tend to have low sorption capacities 
since only their amorphous fractions can interact effectively with organic compounds 14. 
 
Moreover, weathering of plastics can change their sorption capacity towards chemical 
contaminants 16. Liu, et al. 17 observed that the sorption capacity of PS and PVC particles ( 75 
µm) for polar ciprofloxacin (logKow = 0.4) was increased by 123.3% and 20.4%, respectively, after 
a photooxidation period of 96 h. Wu, et al. 18 reported a threefold increase in the sorption capacity 
of isotactic PP towards triclosan (logKow=4.76) following a 40-day period of heat-activated 
treatment with potassium persulfate. In both cases, these changes were explained by the polymer 
surface oxidation resulting from weathering. Therefore, adsorption resulting from hydrogen-
bonding or electrostatic interactions enhanced the surface affinity of PP for hydrophilic 
contaminants.  
 
For the reasons mentioned above, characterization of plastic fragments is essential to better 
understand their ecotoxicological risks. Up to now, several instrumental techniques have been used 
to identify the polymer type of plastic fragments found in the environment. The two most common 
types of molecular spectroscopy cited in the literature are Fourier-transform infrared (FTIR) and 
Raman spectroscopies 19-22. Relative to FTIR spectroscopy, Raman spectroscopy is more sensitive 
to non-polar functional groups (e.g., C=C bonds), offers a better spatial resolution (down to 500 
nm compared to 10-20 m in the case of FTIR) and displays narrower spectral bands 23. However, 
such advantages can be severely hampered by some hurdles, as this method has an inherently low 
signal-to-noise ratio which is prone to fluorescence interferences. As for FTIR, it also has a few 
limitations according to the acquisition mode used, e.g., breakup of non-mechanically stable 
samples, high background absorption 24 and reflection errors due to uneven surfaces. A recent 
review showed that, out of 40 studies conducted on analysis of microplastics in water and 
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sediments, 50% of them used FTIR-based techniques and 10% Raman spectroscopy 21. Also, 
Cowger, et al. 22 arrived at a similar conclusion. In studies published between 1995 and 2019 where 
the chemical nature of plastic samples was assessed, FTIR was the most common spectroscopic 
technique (57%), followed by Raman spectroscopy (21%). 
 
Nowadays, commercial instruments use searching algorithms to compare the preprocessed FTIR 
spectra to a commercial or customized reference library by calculating the hit quality index (HQI) 
and by setting a threshold value, generally ≥ 70%, above which a polymer type is assigned to a 
sample 25. Even though this approach is adequate for relatively pristine plastics, it may not be 
suitable for those that are highly weathered and have a surface in an advanced oxidation state. 
More recently, open-access libraries have become available for Raman spectroscopy 26 and ATR-
FTIR 27, 28. De Frond, et al. 27 demonstrated that including a library composed of environmentally 
aged plastics in addition to a commercial library allowed for an improved spectral matching 
success rate and accuracy. Since such libraries are still in their infancy (only a few hundred on 
entries), alternative methods to identify polymer type and weathering are needed.  
 
An alternative approach to identify polymers in the environment is multivariate classification 
models such as principal component analysis (PCA), hierarchical cluster analysis (HCA), partial 
least squares – discriminant analysis or soft independent modelling by class analogies. Their role 
in accelerating small microplastics (< 100 µm) identification when coupled to infrared imaging 
has gained more attention in the past years, [e.g., da Silva, et al. 29]. Likewise, Primpke, et al. 28 
used HCA of FTIR reference spectra to detect microparticles as small as 11 µm, highlighting the 
great advantages of coupling multivariate techniques to µ-FTIR imaging. More recently, a proof-
of-concept was established for illustrating the power of using PCA in combination to ATR-FTIR 
to assess the UV-B photodegradation mechanisms of a set of common plastics 30. By reducing the 
dimensionality of the ATR-FTIR dataset, PCA was able to display the effects of photochemical 
aging of four plastics. Thus, combining chemometric tools to FTIR spectroscopy appears to be a 
very promising alternative to conventional library searching.  
 
The objective of the present work is to elucidate the chemical nature and signs of weathering of 
polymer debris found in lake and river beaches by applying FTIR spectroscopy in combination 
with two chemometric techniques (PCA and HCA). The results obtained were then validated by 
three other characterization techniques (micro-Raman, X-ray photoelectron spectroscopy and 
scanning electron microscopy) to confirm the polymer type and the surface changes induced by 
weathering.  
 
2. Experimental 
Details on the reagents, materials and methods used are provided according to microplastics 
analysis reporting standards proposed by Andrade, et al. 31 and Cowger, et al. 32. 
 
2.1. Reagents and materials 
Standards of low-density polyethylene [ρ=0.92 g mL-1 at 25 °C, average molecular weight 
(MW)=4,000 Da, Product number : 427772], medium density polyethylene (ρ=0.94 g mL-1 at 25 
°C, 332119), isotactic polypropylene (ρ=0.9 g mL-1 at 25 °C, MW=12,000 Da, 428116), 
amorphous polypropylene (ρ=0.9 g mL-1 at 25 °C, 428175), polystyrene (ρ=1.06 and 1.047 g mL-
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1 at 25 °C, MW=35,000 Da and MW=280,000 Da, 331651 and 182427 respectively), 
polyvinylchloride (ρ=1.4 g mL-1 at 25 °C for both, MW=48,000 Da and 85,000 Da, 81388 and 
182621 respectively) and polyethylene terephthalate (ρ=1.68 g mL-1 at 25°C, 429252) were all 
purchased from Sigma-Aldrich. Please note that physical properties for standards were reported as 
stated by the supplier.  
 
Polymer samples derived from diverse consumer products (e.g., food containers, bottles, etc.) were 
also gathered for analysis. Only samples indicating the polymer nature with recycling codes were 
used. In total 22 consumer product samples were collected: 8 polyethylene samples (PE) (yogurt, 
nutrients/vitamin bottle), 10 polypropylene samples (PP) (yogurt, shovel, flowerpot), 10 
polyethylene terephthalate samples (PET) (energy drink, food container), 10 polystyrene samples 
(PS) (yogurt, coffee cup, foam) and 8 polyvinylchloride samples (PVC) (gloves, tubes). Depending 
on the ease of cutting, several sizes were obtained, all in the mesoplastic range (i.e., 5 mm – 25 
mm). This was done with the aid of a metal cutter. Samples were also further checked by ATR-
FTIR to ensure that they presented no evident signs of chemical weathering. For that purpose, 
three distinct spots were analyzed on the outer surface of each material and then averaged.  
 
Control samples, including acrylonitrile butadiene styrene (ABS, n=1, Lego brick), polycarbonate 
(PC, n=1, roof plate), polytetrafluoroethylene (PTFE, n=1, round tube), polyamide (PA, n=1, 
unknown origin) and polyurethane (PU, n=1, insulation foam), were also used to evaluate the 
selectivity of the method. 
 
2.2. Sample collection and preparation 
Samples of polymer fragments were picked up by hand in four different beach locations in the 
Estrie region in Quebec, Canada between June and August 2019, during sunny days. Four different 
locations were sampled at least three times: Lyster lake beach (latitude 45.0337674 N; longitude -
71.9189507, sampling dates: 07/23/2019, 08/062019 and 08/13/2019), Magog City public beach 
(45.294228; -72.0451747, 07/23/2019, 08/06/2019 and 08/13/2019), Municipal beach in 
Sherbrooke (45.3355837; -72.0239399, 07/23/2019, 08/06/2019 and 08/13/2019) and Lucien 
Blanchard Park beach in Sherbrooke (45.3929262; -71.9381494, 06/21/2019, 07/23/2019 and 
08/13/2019). 
 
After collection, samples were stored in the dark at room temperature in Petri dishes until further 
use. All samples (i.e., standards, consumer products, control, and beach samples) were rinsed prior 
to analysis, in a vacuum filtration system, as follows: three times with distilled de-ionized water, 
twice with water purified by Milli-Q system, once with ethanol (95% volume, P016EA95, 
Greenfield), once with hexane (ACS reagent ≥98.5%, 178918, Sigma-Aldrich) and finally one 
time with methanol (≥99.9%, A456-4, Fisher).  
 
In a recent study by Kirchkeszner, et al. 33, it was demonstrated that ethanol 95% v/v caused 
swelling of PP and  increased the concentration of additives at the polymer surface. Thus, swelling 
processes could potentially alter the chemical characterization of polymers. However, such 
phenomenon is limited (<1% of swelling) when contact times are low (< 25 h) at it is the case for 
the rinsing and cleaning procedure used here, which lasted only a few minutes per sample. Since 
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the presence of artifacts (e.g., biofilms, organic matter) on polymers’ surfaces can also alter their 
chemical characterization, cleaning procedures using organic solvents are necessary.  
 
2.3. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectroscopy  
FTIR spectra were acquired on a Cary 630 Agilent spectrometer using the single-bounce ATR 
mode. Samples were placed on a diamond crystal plate and scanned from 600 cm-1 to 4000 cm-1 
at room temperature. Data was collected as transmittance percentage  (T%, y axis). Spectral 
resolution was set to 4 cm-1 and 32 accumulated scans per sample. An HappGenzel apodization 
function (Agilent microLab software) was applied for each spectra recorded. Background settings 
were the same as for sample analysis, with the difference that no load was placed against the 
crystal. Moreover, special care was taken to record the background before measuring each sample, 
to decrease as much as possible external error sources (e.g., breathing, atmospheric variability) 
which could have a direct influence on the spectral shape and the chemometric analysis. 
Additionally, all spectra were corrected for light-reflectance penetration and baseline 
displacement. For some rough plastics, it was impossible to directly obtain a reproducible signal 
due to geometrical irregularities. Therefore, these samples were cut with a metal cutter in such a 
way that made the surface flatter. This procedure allowed for the analysis of all beach samples. 
 
Samples collected in Lucien Blanchard Park beach (73.5 % of the collected samples) were 
analyzed in triplicate to confirm the absence of intra-sample variability, poor contact between the 
sample and ATR element and/or atmospheric variability. After checking the data collected, it was 
concluded that spectra were reproducible, and the rest of the samples were analyzed only once.  
 
2.4. Data analysis 
Once spectra were obtained, data preprocessing was necessary to remove noise and enhance small 
differences between the spectra of the samples given their structural similarities 34. For example, 
the presence of methylene groups in all polymers or the occurrence of phenyl groups in both PS 
and PET. Therefore, a series of transformations were applied on FTIR spectra, in accordance with 
a previously validated method 35. 
 
First, the FTIR spectra collected in triplicate were averaged and standardized (i.e., by subtracting 
the mean from an individual transmittance value and then dividing the difference by the standard 
deviation). Then, the first derivative of each spectrum was calculated and a Savitzky-Golay 
smoothing (second-order polynomial, points of window: 5) was applied. All preprocessing steps 
were done in OriginPro software (version 2021b) from OriginLab. The spectra thus preprocessed 
were then analyzed using PCA and HCA also using OriginPro. 
 
For PCA, the Principal Component Analysis for Spectroscopy (v.1.30) application in OriginPro 
was used. Wavenumbers (4000-600 cm-1, in total 1825 different values) were set as variables and 
preprocessed signal for each sample as observations. In the Settings tab, the first 10 principal 
components (PCs) were extracted using the covariance matrix. Likewise, the “Standardize Scores” 
option was selected to standardize scores of each component. In the “Quantities to Compute” tab, 
Loadings and Scores were selected, and their values reported in the report data sheet. In the “Plots” 
tab, Scree plot, loading Plot, score plots and biplots were created to investigate the relationships 
between variables and observations. Confidence ellipses were also shown to spatially visualize 
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which samples should be considered as classified and others whose identity remained unknown. 
Finally, all plots (except Scree plots) were given in a two-component configuration as the inclusion 
of a third component would have rendered any interpretation of results too complicated.   
 
In the case of HCA, wavenumbers (4000-600 cm-1, 1825 different values) were set as observations 
and preprocessed signals for each sample as variables. In the “Settings” tab, variables were selected 
as the type of objects to cluster. Furthest neighbor, also known as complete linkage, was set as the 
cluster method. Pearson correlation was used as distance type and the sum of squares of distances 
was used to find clustroids, i.e., the most representative data point for each cluster. Variables were 
standardized with zero mean and unit standard deviation in the preprocessing step so as no more 
standardization was necessary prior to HCA analysis. The number of clusters was set to six 
considering the number of targeted polymers (PE, PP, PS, PVC, and PET) plus an “unknown” 
group. Increasing the number of clusters to ten, did not change significantly the dendrogram. In 
the “Quantities” tab, dissimilarity matrix, cluster stages and clustroid info were selected and the 
calculated values reported in a new data sheet. In the “Plot” tab, results were displayed in a single 
graph in the form of a circular dendrogram with the y axis indicating the distance between two 
variables. Other types of distances (i.e., Euclidean, city block [Manhattan)] and cosine distances) 
were tested (Microsoft Excel sheet DissimilaryMatrices.xlsx, Supplementary information) but 
better results were obtained with Pearson correlation. Likewise, the ability of clustering methods 
(i.e., nearest neighbor, furthest neighbor, group average and ward) to generate of new clusters was 
tested. Except for nearest neighbor, no variation was observed in the classification of variables.    
 
2.5. Micro-Raman (-Raman) spectroscopy 
-Raman spectra were acquired on a Horiba LabRam HR800 (Jobin Yvon) system equipped with 
a nitrogen-cooled CCD detector and working in a backscattering configuration. Samples were 
excited by a He-Ne laser emitting at 632.8 nm wavelength with a laser power kept at 2 mW. For 
every sample, the optimum integration time was set at 2 min and the cumulation number was set 
at 10. In this way, a good signal/noise ratio was obtained, and cosmic rays were removed. Spectra 
were collected in the 560 – 3300 cm-1 wavenumber range using 1800 lines per millimeter grating, 
a spectral resolution of 0.1 cm-1, 50× microscope objective, a hole diameter and slit width of 300 
µm and 150 µm, respectively, were used. Please note that the incident beam was focused on a spot 
of about 3 µm in diameter. Before starting any acquisition, samples were first visualized on a color 
camera by turning the white light illumination on and putting the camera beam splitter down. The 
instrument was calibrated using the known Si Raman band at 520.07 cm-1. Once acquired, all 
individual spectra (wavenumber range of ~850 cm-1/spectra) were manually corrected by a 
multiplying factor to allow for any pixel-to-pixel variation in response to be averaged out over the 
whole spectrum. This step was mandatory as moving the grating resulted in an offset between two 
consecutive spectra. Finally, Raman signals measured in counts per second (cps, y axis) were 
standardized in the same manner as for ATR-FTIR data. Spectra were not recorded in triplicate 
but three different spot positions per sample were carefully examined to avoid reproducibility 
issues. Other data transformations (e.g., smoothing, baseline correction) were not applied as 
standardization alone allowed for spectral comparisons based on expert knowledge. 
 



 

8 

 

2.6. X-ray photoelectron spectroscopy (XPS) 
XPS spectra were acquired on an Ultra DLD spectrometer from Kratos. Sample excitation was 
done by an Al Kα monochromatic source (1486.6 eV) operated at 15 kV and 15 mA, with 225 W 
of applied power. The pressure in the analyzing chamber was maintained below 5.10-8 Torr during 
analysis and the probe sample area was set at 300 m700 m. The depth of analysis was estimated 
to be at ≈10 nm. The photoelectrons were emitted at a 90º angle relative to the plastic surface. The 
analyzer was running in a constant pass energy mode (160 eV for the survey scans and 20 eV for 
the high-resolution scans). The work function of the instrument was calibrated to give a binding 
energy (BE) of 83.96 eV for the Au 4f7/2 line of metallic gold. The dispersion of the spectrometer 
was adjusted to give a BE of 93.62 eV for the Cu 2p3/2 line of metallic Cu. The sample was mounted 
on a non-conductive tape and a charge neutraliser was used on all samples to compensate for the 
charging effect. Charge corrections were made according to the C1s core level of aliphatic polymers 
at 285.0 eV. Data analysis was conducted using the Casa XPS software (version 2.3.25) by 
CasaSoftware. The relative sensitivity factors used were those provided by the manufacturer (i.e., 
Kratos) and the line-shape functions were either of Gaussian-Lorentzian product form or of 
asymmetric type, depending on the chemical function of interest. Three types of spectra were 
collected: a survey spectrum and two high-resolution spectra corresponding to the C1s and O1s 

regions. 
 
2.7. Scanning electron microscopy (SEM) 
Surface images were taken using a Hitachi S-4700 field emission scanning electron microscope, 
with an electron accelerating voltage of 5.0 kV and a 30° sample tilt. Images were acquired at low 
(30and high (200 to 415 magnification. Prior to SEM analysis, samples were sputtered with 
Au/Pd for 30 s using a Hummer 6.2 instrument from Anatech.  
 
3. Results and discussion 
3.1. Characteristics of sampled plastic fragments 
 
In total, 83 plastic fragments were collected in the Estrie region in Quebec, Canada: 61 in Lucien 
Blanchard Park beach, 9 in Lyster lake beach, 4 in Magog beach and 9 in the Sherbrooke municipal 
beach. Globally, a consistent trend was observed for the size distribution of beach plastics, with 
the number of items found negatively correlated with the size, ranging from 0.3 to 7.5 cm. No 
tendency was noted for colors. However blue, white, and red were the most represented colors, as 
their proportion was comprised between 49% to 78 %, depending on the sampling site.  
 
Regarding shape, the fragments collected had different forms: planar, curved and some of them 
had irregularities. Irregular shapes are frequently observed during the detection of plastic 
fragments with a stereomicroscope. Moreover, rough fragmented textures were discovered in 
many collected water and sediment samples 36-38, primarily because of mechanical and/or chemical 
weathering of larger plastic items. In the present case, it was difficult to make assumptions 
regarding the origin of the plastic debris. However, for many fragments, a well-defined shape was 
reported, suggesting a short-scale transport from the source. It could be either due to an improper 
disposal by consumers (i.e., littering) directly on site or in the vicinity, discharge via stormwater 
tanks during high-rain events or through wastewater treatment plants (WWTPs) effluents, although 
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this last case seems less plausible, as macro and mesoplastics entering WWTPs are supposed to be 
retained during primary treatment process 39.  
 
3.2. Chemometric analysis of preprocessed FTIR spectra to screen polymer type 

3.2.1. Validation of the identification of polymer type by principal component analysis 

FTIR spectra of standard samples as well as peak identification are shown in Figures S1 to S5 
(Supplementary information). Acquired spectra of standards and consumer products of known 
composition were then preprocessed, and an example is shown in Figure S6 (Supplementary 
information). As it can be seen, preprocessed spectra showed a negative and positive peak for each 
transmittance peak since they were obtained from the first derivative of the original FTIR spectra. 
These spectra were then analyzed by PCA to test if standards and commercial samples of the same 
type could be grouped together. 
 
Figure 1A shows biplots of the 1st principal component (PC1) vs. the 2nd principal component 
(PC2) and Figure 1B shows PC1 vs. the 3rd principal component (PC3). As it can be seen, polymers 
of the same type, regardless of their origin (i.e., standard or consumer product), formed clusters 
and thus can be easily differentiated from each other. The variables (in this case frequencies in 
wavenumber units) having a larger impact on the separation of the samples are represented as 
loadings (vectors) in the biplots. For sake of simplicity, only the variables with the highest 
loadings, i.e., with absolute values larger than half of the maximum loading value in each principal 
component, were included. Therefore, the vectors showed in biplots match the peaks in the 
preprocessed FTIR spectra that have the largest impact in segregating and grouping the samples. 
Confidence ellipses, based on Hoteling’s T2 statistic can be employed to detect outliers in PCA 40. 
For that reason, the location inside or outside the 95% confidence ellipses was used as a criterion 
to identify which samples can be associated with polymers of known composition.  
 
 As it can be seen in Figure 1A and Figure 1B, the presence of pairs of peaks in the preprocessed 
spectra has a major effect on the PCA. Biplots show pairs of positively and negatively correlated 
loadings to each principal component. For example, in the case of PP in Figure 1A, there is a linear 
dispersion which is strongly correlated to the 2nd principal component and linked to the bending 
vibrations of the methyl groups at 1377 cm-1 19 represented by the loadings between 1379-1385 
cm-1. 
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Figure 1. Biplots (A: PC1 vs PC2, B: PC1 vs. PC3) of preprocessed spectra of standards (s) and 
consumer product (c) polymers. PE: polyethylene, PP: polypropylene, PS: polystyrene, PVC: 
polyvinyl chloride and PET: Polyethylene terephthalate. Numbers besides the loadings correspond 
to wavenumbers with the highest coefficients for each PC. Left and bottom axes correspond to the 
loadings plot and right and top axes to the scores plot. Ellipses indicate 95% confidence.  
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Since CH3 moieties are less abundant in PE (<2–30 CH3/1000 C) compared to isotactic PP (333 
CH3/1000 C) 41, the segregation between these two classes of polymers was possible by PCA. 
Consequently, PE is rather described by other peaks in the preprocessed spectra correlated to PC2 
or PC3 and ranging from 730-743 cm-1 (Figure 1A) and 2851-2858 cm-1 (Figure 1B), due to CH2 
rocking and C–H stretching, respectively. This last mode of vibration is shifted for PP as it appears 
in a less intense manner at lower frequencies. PS is also well separated from PE and PP because it 
introduces three new peaks, the two most representative being the out-of-plane aromatic C–H 
bending corresponding to the loadings 699-716 cm-1 and the skeleton vibrations of the benzene 
ring between 1494-1500 cm-1 38. 
 
PET and PVC clustered together near the origin in both Figure 1A and Figure 1B due to the low 
intensity of their raw spectra (Figure S4 and S5, Supplementary information) especially in the 
region comprised between 2000 and 4000 cm-1 compared to the other three polymers (Figures S1 
to S3). Nevertheless, they were separated in both biplots as indicated by their 95% confidence 
ellipses. The loadings at 730-743 cm-1, which are strongly correlated to PC1, enable the 
discrimination between PET and PVC (Figure 1A and 1B). In fact, they correspond to the aromatic 
bending of C-H bonds only present in PET and shifted to lower wavenumbers (699-716 cm-1) in 
the case of PS.  
 
Control samples (ABS, PA66, PC, PTFE, PU) were also included in the PCA biplots to test the 
reliability of the method. In the biplot of Figure 1A, ABS clusters with the PS samples, since this 
copolymer is partially composed of styrene monomeric units. However, in the biplot of Figure 1B, 
it is located just outside of the 95% confidence ellipse of PS. In the case of PTFE, PA66, PC and 
PU, despite notable differences in their raw and preprocessed spectra as shown in Figures S7 and 
S8 (Supplementary information), these control samples cluster with PVC in the biplot of Figure 
1A. However, only PC appears inside the 95% confidence interval for PVC in the biplot of Figure 
1B. This observation may be explained by the lack of meaningful signal intensities in the spectra 
of the control samples at the wavenumbers that explain most of the variability in PC1 and PC2 19, 
which impedes their discrimination in the first biplot. 
 
In summary, PCA of preprocessed FTIR spectra was efficient at distinguishing the most frequently 
detected polymers (PE, PP, PS, PET and PVC). More importantly, all polymers of a same type 
clustered inside the same 95% confidence ellipse, meaning that any divergence which could be 
later observed in case of beach plastics could potentially suggest weathering. PCA results also 
showed that the control sample ABS clustered inside the 95% confidence interval of PS and PA66, 
PC, PTFE and PU were located inside the 95% confidence interval of PVC in the PC1 vs PC2 
biplot. However, this trend was not observed in the PC1 vs the PC3 biplot. Therefore, identification 
of polymer type by PCA of environmental samples could be less accurate for PS and PVC. 
 

3.2.2. Screening of polymer type of beach samples by PCA 

After a validation step proving the robustness and limitations of the PCA method, beach (i.e., 
unknown) samples were further included in the analysis. Biplots of the preprocessed FTIR spectra 
of plastics of known composition and beach samples are shown in Figure 2. Given the similarity 
between the spectra of standards and consumer products (Figure 1), they were pooled together 
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according to polymer type (i.e., PE, PP, PS, PVC, or PET). The PCA showed that the first three 
PCs accounted for 87.7 % of the observed variation in the preprocessed spectra of all samples.  

 

 
Figure 2. Biplots (A: PC1 vs PC2, B: PC1 vs. PC3) of the preprocessed FTIR spectra of polymers 
of known composition (standards, consumer products and controls) and samples found on beaches. 
PE: polyethylene, PP: polypropylene, PS: polystyrene, PVC: polyvinyl chloride and PET: 
polyethylene terephthalate, PU: polyurethane; ABS: acrylonitrile butadiene styrene PA66: 
polyamide; PC: polycarbonate; PTFE: polytetrafluoroethylene. Ellipses indicate 95% confidence. 
Numbers besides the vectors correspond to wavenumbers with the highest coefficients for each 
PC. Left and bottom axes correspond to the loadings plot and right and top axis to the scores plot.  
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Some beach samples clustered inside the 95% confidence ellipses of PE, PP, PS, PET, and PVC. 
For that reason, according to the biplot shown in Figure 2A, their relative proportions were: PE 
(15.7% or 13/83), PP (15.7% or 13/83), PS (4.8% or 4/83), PET (1.2% or 1/83), PVC (2.4% or 
2/83). Nevertheless, it is conceivable that the beach samples inside the 95% interval ellipses of 
PVC or PS could be wrongly identified since control samples (PA66, PC, PTFE PU and ABS) 
were grouped with one of these two polymers. In just a few cases (5 out 83), there was a 
discrepancy between the identification given by PC1 vs PC2 and PC1 vs PC3. This observation is 
consistent with the very nature of PCA, where the first two PCs extract the most representative 
peaks of each type of polymer. The remaining beach samples (60.2%, or 50/83) could be classified 
as outliers.  
 
 It was hypothesized that these outliers correspond either to copolymers (i.e., polymer blends) or 
weathered plastic fragments, for which altered surface functional groups may have changed their 
infrared spectra signature. On the other hand, fragments for which a polymer type was assigned 
(39.8%, 33/83) should have little to no degree of chemical weathering. This behavior seems rather 
logical since these samples cluster with standard or commercial polymers, whose unaltered state 
was known. Since 60.2% beach polymers remained unidentified, another multivariate statistical 
method, HCA, was applied to further group the beach samples in clusters associated to polymers 
of known composition. 
 

3.2.3. Hierarchical cluster analysis  

 
Results of the HCA of samples of known composition and beach samples are shown in Figure 3. 
According to HCA, out of 83 beach samples, 21.7 % (18/83) could be associated to PE, 65.1 % 
(54/83) to PP, 7.2 % (6/83) to PS, 6.0 % (5/83) to PET, and 0% to PVC. None of the beach samples 
were classified as “unknown” by HCA and only two controls (PTFE and PC) were clustered apart 
from all the other samples. This was not due to the number of selected clusters (six) used to perform 
the analysis, since a higher number of clusters (e.g., ten) revealed that only four beach samples did 
not cluster with PE, PP, PS, PET, or PVC. 
 
Control samples were grouped either on their own or with a polymer standard. PTFE and PC 
clustered in an "unknown group" while ABS was grouped with PS (the same was observed in the 
PCA), while PA66 and PU were grouped with PE and PET, respectively. These latter control 
samples were more similar to beach samples than to polymer standards or to commercial samples 
as they were located in different subbranches in the dendrogram. Surprisingly, no control was 
grouped with PVC as it was the case in the PCA. PA66 showed a -CH2 stretching band at 2862 
cm-1 like that of PE at 2870 cm-1, which explains the grouping of PA66 to the PE cluster. In the 
case of PU, its structure shares some common structural features with PET, that is the presence of 
an aromatic C–H out-of-plane bending located at 817 cm-1 or a C–O stretching band at 1726 cm-1 

coming from the ester group. As explained previously, ABS clustered with PS samples due to the 
presence of styrene monomeric units. Although PTFE and PC are different in terms of 
composition, they were grouped together in the dendrogram, probably because they had both 
strong signals in the region < 1750 cm-1 and weak peaks in the region > 1750 cm-1. 



 

14 

 

 

 
Figure 3. Circular-oriented dendrogram obtained by HCA of preprocessed FTIR spectra of 
standards, consumer products, controls and beach samples. The scale from 0 to 1.4 indicates 
distance according to the similarity among the samples. For the sake of clarity, standards, and 
consumer products of the same type of polymer were pooled. PE: polyethylene, PP: polypropylene, 
PS: polystyrene, PVC: polyvinyl chloride, PET: polyethylene terephthalate. 
 
 

3.2.4. Comparison of PCA and HCA to screen polymer type 
 
As mentioned in the previous sections, in the case of PCA, samples were assigned to a polymer 
type when they fell inside a 95% confidence ellipse, otherwise they were labeled as “Not Identified 
|(N.I.)”. For HCA, the identification was made depending on the presence of standard/consumer 
product samples in the same branch as the beach sample. Therefore, according to the results 
obtained by PCA and HCA (Table 1), PE and PP are the most abundant types of polymers 
recovered on the samples beaches. These two polymers are also the thermoplastics with the highest 
annual production volume worldwide 42. 
 
Table 1. Classification of the beach samples according to PCA and HCA 
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Sample 
Identity 
PCA 

Identity 
HCA 

Sample 
Identity 
PCA 

Identity 
HCA 

Sample 
Identity 
PCA 

Identity 
HCA 

Beach-001 PE PE Beach-029 N.I. PP Beach-057 PP PP 
Beach-002 PE PE Beach-030 N.I. PP Beach-058 N.I. PP 
Beach-003 PS PS Beach-031 PP PP Beach-059 PP PP 
Beach-004 N.I. PP Beach-032 N.I. PP Beach-060 N.I. PP 
Beach-005 PE PE Beach-033 PP PP Beach-061 PE PE 
Beach-006 PET PET Beach-034 PP PP Beach-062 N.I. PP 
Beach-007 PE PE Beach-035 PE PE Beach-063 PE PE 
Beach-008 PVC PET Beach-036 PE PE Beach-064 N.I. PP 
Beach-009 N.I. PE Beach-037 N.I. PP Beach-065 N.I. PE 
Beach-010 N.I. PP Beach-038 N.I. PP Beach-066 N.I. PP 
Beach-011 N.I. PET Beach-039 PP PP Beach-067 N.I. PP 
Beach-012 N.I. PE Beach-040 N.I. PP Beach-068 N.I. PP 
Beach-013 PS PS Beach-041 PP PP Beach-069 N.I. PP 
Beach-014 PE PE Beach-042 N.I. PP Beach-070 N.I. PE 
Beach-015 N.I. PP Beach-043 N.I. PP Beach-071 PVC PET 
Beach-016 N.I. PP Beach-044 N.I. PP Beach-072 PP PP 
Beach-017 PS PS Beach-045 N.I. PP Beach-073 N.I. PP 
Beach-018 N.I. PP Beach-046 N.I. PP Beach-074 N.I. PE 
Beach-019 N.I. PS Beach-047 N.I. PP Beach-075 N.I. PP 
Beach-020 N.I. PS Beach-048 PE PE Beach-076 PP PP 
Beach-021 PE PE Beach-049 N.I. PP Beach-077 N.I. PP 
Beach-022 PS PS Beach-050 PE PE Beach-078 N.I. PP 
Beach-023 PP PP Beach-051 N.I. PP Beach-079 N.I. PP 
Beach-024 N.I. PP Beach-052 PP PP Beach-080 N.I. PP 
Beach-025 N.I. PP Beach-053 PP PP Beach-081 N.I. PP 
Beach-026 N.I. PET Beach-054 N.I. PP Beach-082 N.I. PP 
Beach-027 PP PP Beach-055 PE PE Beach-083 N.I. PP 
Beach-028 N.I. PP Beach-056 N.I. PP    

N.I.: not identified by the chemometric technique used. 
 
When samples were identified by PCA, HCA agreed on 93.9% of the samples (31/33). It is not 
clear why some samples were only identified by HCA. The high number of samples not identified 
by PCA (50/83) can be explained by diverse factors, such as: i) environmental degradation and/or 
ii) the presence of additives or copolymers. It is known that polymers can degrade by various 
pathways, e.g., photo-oxidation/degradation, thermo-oxidation/degradation, mechanical 
degradation, biodegradation and hydrolysis 43. All these natural weathering processes are expected 
to alter the chemical integrity of plastics by forming hydroxyl and carbonyl groups. In one study, 
the six-month natural photooxidative ageing of four standard polymers (LDPE, HDPE, PP and PS) 
was reflected by changes in the scores position in the PCA biplot 44. Likewise, particle surface 
covering by organic contaminants and/or biofilms can severely hamper the proper identification 
of plastic fragments. However, a thorough cleaning procedure using various solvents (section 2.2) 
was done before submitting the plastics to any identification method, thus limiting this 
contribution.   
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The results presented here suggest that PCA seems to be more susceptible than HCA to weathering 
effects on polymers. This may be explained by the way in which samples are clustered. In the case 
of PCA, variability on the preprocessed spectra was explained mostly by three principal 
components that are themselves linear combinations of the main peaks in the spectra. In the case 
of HCA, samples were grouped according to their distances, i.e., the similarities of their 
preprocessed spectra (the more similar two samples are, the lower their distance). Those distances 
were determined according to the Pearson correlation coefficients between the samples. Therefore, 
in HCA small differences between the spectra caused by a few peaks appear to have a lesser 
contribution to the overall result compared to PCA.  
 
In contrast to conventional library searching, which is based on discrete similarity analysis 
calculations, e.g., hit quality index (HQI) or ∆HQI values between samples and reference 
databases, multivariate statistical models offer the opportunity to investigate the relationships 
between all samples in a single graph, either by reducing the dimensionality of the complex dataset 
in the case of PCA or by generating groups of related samples for HCA. Moreover, spectral 
features (e.g., additives, chemical weathering) which could have hindered the proper classification 
of samples are less susceptible to distort the results obtained by these two multivariate techniques. 
 
3.3.  Bond indexes of beach samples of selected beach samples to investigate their weathering 

state 
It was decided to test the hypothesis mentioned earlier that the observed PP outliers, i.e., samples 
located outside the 95 % confidence ellipse of PP in the PC1 vs PC2 biplot of Figure 4A (a 
simplified version of Figure 2A), corresponded to weathered PP. This hypothesis was supported 
by the observation that these samples are found along the axis of the loadings 1385-1379 cm-1 
which may indicate a gradual loss of methyl groups in the PP backbone following chemical 
weathering 45, 46. It is known that weathering of polyolefins such as PP occurs mainly through 
photo-oxidation reactions, by means of oxygen and UV-light radiation below 400 nm 45. Since 
alkane bonds do not absorb above 200 nm, other structural defects (e.g., vinylidene groups, 
ketones, hydroperoxides) introduced during the polymerization process act as chromophores. In 
the field of polymer testing and engineering, ratios between infrared absorption peaks, known as 
bond indexes, are routinely employed to evaluate polymer weathering 47, 48. Different methods 
permit the assessment of those indexes, by measuring peak heights or band areas 49, 50. However, 
considering only one specific peak instead of the entire set of peaks can be misleading, as 
numerous chemical functions are formed through photo-oxidation. To overcome this issue, the 
specified area under band (SAUB) method was recently proposed 51. Therefore, to investigate 
possible weathering of the samples in Figure 4A, the carbon-oxygen, carbonyl and hydroxyl 
indexes were calculated by the SAUB method for each sample, following averaging of the three 
replicate spectra. 
 
As it can be seen in Figure 4B, a positive linear relationship between the three indexes and the 
score distance to the PP standard is demonstrated by the Pearson correlation coefficients (rcarbon-

oxygen=0. 8309, rcarbonyl=0.5713, rhydroxyl=0.7929). Samples further away from the PP standard show 
increasingly abundant signs of the presence of chemical functions observed in weathered 
polymers. Therefore, changes in the spectra at 1379-1385 cm-1 acted as a marker of weathering in 
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the beach samples. Thus, the hypothesis proposed earlier that the beach samples outside the 95 % 
confidence ellipse of Figure 4A are weathered PP appears to be validated.  

 
Figure 4. A: Location of selected beach samples in the PCA biplot with respect to the PP standard. 
Only samples collected in the Lucien-Blanchard Park were used as they represented most of the 
samples outside the PP 95% confidence ellipse. Beach samples identified by numbers were 
selected for further characterization. B: Weathering in beach samples demonstrated by the 
calculation of bond indexes. The distance from PP was calculated according to the PCA score 
coordinates in Figure 4A.  
 
Figure 4B also shows that carbon-oxygen index was consistently higher than the two other indexes. 
Although the hydroxyl index is generally reported to be smaller than the carbonyl index 52, a 
favorable mechanism of hydrogen abstraction by alkoxyl radicals forming alcohols could support 
the tendency observed here. On the contrary, the high value of the carbonyl index (0.978) in the 
case of sample Beach-26 (distance from the PP standard in Figure 4A=1.923) may be attributed to 
the formation of esters as indicated by a peak observed at 1733 cm-1, resulting from the 
decomposition of ketones and hydroperoxides, thereby decreasing the hydroxyl index at the same 
time. Photolytic decomposition of ketones, also known as Norrish I and Norrish II reactions, results 
in an increase of the carbonyl index value by forming carbon monoxide and a methyl ketone, 
respectively 53. 
 
While the results obtained consisted only in a “screenshot” of the current state of materials, as 
erosion of small plastic pieces may later change the surface chemistry 47, 54, the results suggest that 
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PCA is useful to identify possible chemical weathering in plastic  samples found in the 
environment.  
 
3.4. Further evidence of the chemical weathering of selected beach samples 
In the samples outside the PP 95% confidence ellipse of Figure 4A, even if the carbonyl peak is 
not as prominent as expected, characterizing some of these samples in detail can provide 
substantial information about the structural changes that could have occurred during the outdoor 
exposition of beach samples. For that reason, it was decided to select a few samples representative 
of that group. These samples are shown in Figure 4A (Beach-26, Beach-51, Beach-56, and Beach-
80). As it can be shown, these samples are increasingly away from the PP standard in the PC1 vs 
PC2 biplot and it was hypothesized they would have gradual changes in their composition that 
explain such trend. 
 

3.4.1. Analysis of the carbonyl region in the FTIR spectra  

Many studies make use of the carbonyl index as a probe to monitor the extent of plastic weathering 
55-57. For example, Turner and Holmes 58 measured keto-carbonyl index for pellets retrieved on 
beaches was in accordance with their degree of yellowing, where brown-colored pellets had a 
roughly ten times higher index than that of the white pellets Unfortunately, it was impossible to 
make such a quantitative assessment regarding the degree of yellowing for each plastic particle in 
the present paper, as their origin was unknown. 
 
The C=O region in FTIR was studied in detail for a representative set of samples unidentified by 
PCA (Beach-26, Beach-51, Beach-56, and Beach-80) and whose C=O indices are displayed in a 
gradient order. The aim was to confirm the weathering suggested by the bond indexes. Carbonyl 
stretching vibrations (1680 – 1800 cm-1) are indicative of an oxidized polymer surface and gather 
different oxygen-containing functional groups: amide, ester, carboxylic acid, ketone, aldehyde and 
others. The FTIR spectra of weathered PP samples in Figure S9 (Supplementary information) 
confirms that these plastic debris underwent various physicochemical transformations 59.  
 
Globally, analysis of the carbonyl region in the unprocessed FTIR spectra of the selected samples 
confirmed the same conclusion reached with the bond indexes. Indeed, polar functional groups 
formed during environmental exposure of polymer materials induced significant chemical changes 
relative to their initial polymeric nature, which could in part explain why they were classified as 
outliers in the PC1 vs PC2 biplot. However, oxygenated functions are not the only oxidation 
photoproducts, as scission products also result in the formation of olefins that can be observed 
with other spectroscopic techniques such as Raman.  
 

3.4.2. Raman micro-spectroscopy (µ-Raman)  

As µ-Raman is more adapted for the study of homoatomic bonds than FTIR, the same unidentified 
beach samples analyzed in the previous section were submitted to µ-Raman analysis. As shown in 
Figure S10 and Table S5 (Supplementary information), spectral features commonly detected for 
isotactic PP were also reported for the PP standard, meaning that the homopolymer was in a pure 
chemical state 60, 61. Unlike the previous FTIR results, no significant changes were noticed between 
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PP and Beach-80 Raman spectra, as no vinyl-groups appeared to be formed in the latter. An 
induction period is usually observed before the vinyl content starts to increase, by the way of 
Norrish type II reactions 62. This may be due in part to the presence of antioxidant additives at the 
polymer surface, which delay the formation of carbonyl functions, prior to their final consumption 
63. Otherwise, samples Beach-56 and Beach-51 revealed far more complex signals with an obvious 
rise in the proportion of olefinic unsaturations. This suggests that a great number of chain scissions 
occurred due to environmental exposition. Alternatively, residual monomers (i.e., propylene) 
trapped in PP could also explain the presence of carbon double bonds. However, this situation is 
unlikely to happen as unreacted propylene monomers are generally recycled throughout the 
polymerization process 64, 65. Besides, the detection of chloride and/or bromide atoms in the lower 
frequency regions can be ascribed to the migration of halogenated additives (e.g., polybrominated 
diphenyl ethers, hexabromocyclododecane) towards the polymer surface, where they potentially 
yield brominated by-products after leaching out 66. Compared to Beach-56 and Beach-51, no vinyl 
groups (≈ 1531 cm-1) were detected for Beach-26, but a strong peak at ≈ 1086 cm-1 was evident. It 
indicates the presence of C–O–C bonds inside the polymer structure, in accordance with the peak 
at 1733 cm-1 in the FTIR spectra recorded for the same material (Figure S9). In fact, this 
wavenumber is typical of the existence of ester groups, which may have been formed after the 
reaction of ketones with alkoxy-radicals.  
 
µ-Raman allowed to monitor specific vibrational bands (i.e., olefinic bands) which would not have 
been detected with the same intensity with FTIR. Also, this technique permits a deeper 
interpretation of previous results. In fact, it is possible to confirm that Norrish II reactions occurred 
for Beach-56 and Beach-51, but environmental exposure yielded other photoproducts (i.e., esters) 
in the case of Beach-26.  
 

3.4.3.  X-ray photoelectron spectroscopy (XPS) 

XPS gives complementary information compared to ATR-FTIR since the former has a lower depth 
of analysis (≈10 nm) compared to the former (0.5 – 5 µm). For that reason, XPS was used to 
characterize the top surface of the four selected unidentified beach samples as well as a PP 
standard. Figure S11 (Supplementary information) shows the spectral survey of the selected 
samples. According to the quantification results in Table 2, carbon could be considered as the main 
constituent (C1s at 285 eV) and oxygen the principal contaminant (O1s at 532 eV), up to a 
concentration of roughly 17%. Although few other elements were detected like nitrogen (N1s at 
400 eV), calcium (Ca2p at 347 eV), sulphur (S2s at 228 eV), silicon (Si2s at 153 eV) or sodium (Na1s 
at 1072 eV), their concentrations did not exceed 3%. Contrary to FTIR data where Beach-26 was 
determined as the most oxidized sample, Beach-56 here had the highest oxygen amount and 
number of contaminants. The depth of penetration differences between ATR-FTIR and XPS 
techniques could explain those results. In a study based on the degradation of stacked 
polypropylene samples, the carbonyl absorbance only decreased after 100 µm depth, meaning that 
XPS analysis would have been insufficient to monitor the full degree of oxidation 67. Another 
paper also reported a maximum photo-oxidation depth of 250 µm after the artificial weathering of 
PP 68. Thus, XPS is only able to collect a minor fraction of the chemical information available in 
a weathered polymer. Nevertheless, XPS gives invaluable information on the composition of the 
top surface (≈8 – 10 nm) of samples, which is seen as a good indicator of the direct solar exposition 
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of the material and it has often been probed to understand how the UV-radiation affects the 
formation of functional groups in PP samples 69, 70. 
 
Table 2. Quantification results from the XPS survey spectra of standard PP and the studied 
unknown samples. 

Sample 
Atomic concentration (%) 

C 1s O 1s N 1s Ca 2p S Si Na Fe Al 
PP ≈ 100% Trace - - - - - - - 

Beach-80 86.65 9.83 <1 - - 1.53 - <1 <1 
Beach-56 75.8 17.1 1.94 <1 1.41 1.1 1.36 - <1 
Beach-51 83.37 12.21 1.5 <1 - 1.33 - <1 <1 
Beach-26 78.49 15.61 2.98 <1 - 1.43 - <1 <1 

 
Table 3 reports atomic concentrations (as %) associated to all homo- and heteroatomic carbon 
bonds determined from C1s high-resolution spectra (Figure S12A, Supplementary information). 
The proportion of carbon-oxygen bonds (i.e., the oxidized part) increases steadily by contrast to 
those of the saturated hydrocarbons.  
 
Table 3. Quantification results from the C1s high-resolution spectra of standard PP and the selected 
beach samples. 

Sample 
Bond concentration (%) 

C-C C=C C-O-C/C-OH C=O COOH O=C-N-C=O 
PP 98.56 0.39 1.05 - - - 

Beach-80 93.50 0.34 3.55 0.89 0.92 0.79 
Beach-56 86.93 1.36 6.14 1.35 1.42 2.80 
Beach-51 83.79 4.77 6.51 1.50 1.07 2.36 
Beach-26 83.57 2.33 7.66 1.96 1.20 3.28 

 
A mechanism has already been proposed to explain the formation of alcohol-groups for ultra-high 
molecular weight polyethylene 71. Briefly, peroxy-radicals formed at the subsurface react with 
each other to give a carbonyl-group and an alcohol-group. Except for Beach-26, the linearity 
between vinyl-groups and carbonyl-groups was evident, proving that chain scissions mainly 
occurred within polymers by Norrish II reactions 72. In the case of Beach-26, it is possible that the 
abundance of vinylidene groups decreased after a subsequent oxidation into carbonyl-groups. This 
assumption is supported by Yanai, et al. 73 who found a higher vinylidene content in the inner 
layers than at the outer layers after 286 h of UV-irradiation, by contrast to that of the carbonyl 
groups which was highest at the surface. Finally, the quantity of carbon-nitrogen bonds was 
consistent to the spectral survey results.  
 
Table 4 shows the bond concentrations (%) associated to oxygen bonds determined from O1s high-
resolution spectra (Figure S12B, Supplementary information). Two important trends can be 
observed in this table. First, the increase of C-O bonds along weathering is similar to previous 
results (Table 3). Moreover, the ratio of C-O versus C=O bonds follows the same trend and might 
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account for esters formation through photolysis of in-chain ketones by alkoxy radicals 74. Second, 
a decrease in the charging effects is explained by the concomitant increase of surface polar 
functional groups (e.g., alcohols, esters, ketones), which affect the electronic properties of the 
polymer via the introduction of new electrical dipoles 69.  
 
Table 4. Quantification results from the O1s high-resolution spectra of standard PP and the selected 
beach samples. 

Sample 
 Bond concentration (%) 

Charge effect C=O C-O-C/C-OH O-C=O 
PP - - - - 

Beach-80 7.78 46.54 39.93 5.75 
Beach-56 7.25 36.51 45.87 9.11 
Beach-51 4.95 32.52 40.90 21.63 
Beach-26 2.68 22.85 47.75 26.73 

 
Overall, XPS turned out to be a very efficient technique for the quantification of specific chemical 
bonds at the top layer, which cannot be selectively probed by Raman or FTIR.  XPS spectral survey 
results sometimes contrasted with those of FTIR, where Beach-56 was deemed as the most 
oxidized unidentified sample, instead of Beach-26. Otherwise, the conclusions drawn with FTIR 
and µ-Raman spectroscopy, indicating that except for Beach-26, Norrish II reactions seemed to 
have taken place mostly at the surface of unidentified plastics, were quite similar with XPS. In 
addition, according to O1s high-resolution spectra, ester group concentration was the highest for 
Beach-26, supporting FTIR observations.   
 

3.4.4. Scanning Electron Microscopy (SEM)  

 
All the structural modifications discussed earlier generate numerous cracks, pits and/or flakes at 
the surface of the polymers, rendering the material more brittle 75, 76. The current state of the 
material’s surface may therefore reflect the extent of polymer degradation. Then, irregularities in 
the first polymeric layer should become more and more pronounced as we move away from the 
PP cluster. Of all the analytical techniques employed to picture the surface topology of plastics, 
SEM is one of the most represented 77. Thus, SEM was used to confirm that the surface of the 
selected unidentified beach samples agreed with their degree of chemical weathering. 
 
The level of physical and chemical weathering of the selected beach samples (Figure S13, 
Supplementary information) was consistent with previous results. The less weathered Beach-80 
and Beach-56 beach samples showed grooves along their upper surfaces (Figure S13B) suggesting 
previous sedimentological processes such as saltation, where plastic particles may have come into 
contact with sand grains 78. As these processes are only of mechanical nature, it is therefore not 
expected that these samples contain a high oxygen content. However, the XPS survey spectra 
results shown in Table 2 indicated that Beach-56 was the most oxidized of the unidentified beach 
samples, with almost 25% (O∕C=0.23) of oxygen amount. A closer look at the particle section 
(magnification 200) revealed the existence of numerous solution pits, which are well known to 
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contain oxidation textures within or around them 79. Therefore, it was hypothesized that Beach-56 
was mostly oxidized on the edges than in the upper surface, a tendency also observed by Corcoran, 
et al. 80. In fact, they reported that particle margins were favorable sites of oxidation, as for linear 
fractures, with a positive correlation existing between the extent of mechanical weathering textures 
and the degree of chemical oxidation. Besides, samples Beach-51 (Figure S13C) and Beach-26 
(Figure S13D) displayed more complex degradation patterns in their upper surfaces such as flakes 
and even a vermiculate texture (magnification 30), whose presence for the latter is indicative of 
extended chemical weathering. Consequently, Beach-26 may have experienced prolonged 
exposure time in the beach environment than in the solution environment, as the level of UV-
radiation and mechanical erosion is minimal in rivers, compared to beaches. Finally, SEM images 
confirmed that Beach-26 was the most oxidized of the selected beach samples, followed closely 
by Beach-56 and Beach-51 samples, whereas Beach-80 upper surface seemed to have only 
undergone mechanical weathering (results not shown). 
 
4. Conclusions 
 
PCA and HCA of preprocessed infrared spectra of plastic debris found on public beaches showed 
that samples can be associated with known polymers, but a clear identification was not always 
possible. About 60% of the beach samples were classified as outliers by PCA. However all of them 
were classified by HCA as one of the five targeted polymers in this study (PE, PP, PS, PET, and 
PVC). 
 
Analysis by an array of complementary techniques (FTIR, -Raman, XPS, SEM) of beach samples 
classified as outliers to PP in PCA showed that weathering was found to be the main cause of 
uncertain identification of beach samples, however, in some cases the presence of copolymers and 
additives cannot be completely ruled out. While results showed that -Raman, XPS and SEM were 
necessary to comprehend more readily the nature the phenomena responsible for the 
transformation of samples, this study shows that PCA and HCA of preprocessed IR spectra could 
be used for fast screening of polymer weathering in environmental samples.  
 
Future experiments should focus on the applicability of the proposed combined chemometric 
approach for very small microplastics (<100 µm), as they have more important effects than larger 
plastics on aquatic ecosystems. 
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